Initiated by the University of Tartu, the pan-European research network of fundamental pH Research UnipHied ( started in May 2018.

Why is such network needed? As of now, it is not possible to compare pH values of solutions made in different solvents, as every solvent has its own pH scale. This situation is highly unfortunate, since it causes confusion and inaccuracies into many fields, extending far beyond the specific field of acid-base chemistry. Examples are industrial catalytic processes, food chemistry, liquid chromatograpy, etc. The central goal of UnipHied is to overcome this situation by putting the new theoretical concept of the recently introduced unified pHabs scale on a metrologically well-founded basis into practice.

The most important specific objectives of UnipHied are (1) to develop and validate a reliable and universally applicable measurement procedure that enables the measurement of pHabs; (2) to create a reliable method for the experimental or computational evaluation of the liquid junction potential between aqueous and non-aqueous solutions; (3) to develop a coherent and validated suite of calibration standards for standardizing routine measurement systems in terms of pHabs values for a variety of widespread systems (e.g., industrial mixtures, soils/waters, food products, biomaterials).

The first version of the pHabs measurement procedure has been created by Agnes Heering (Suu) in the framework of her PhD thesis. The main experimental difficulty is evaluation of the liquid junction potential (LJP), which will be thoroughly addressed by UnipHied. The first important steps towards this goal have very recently been made and published as two back-to-back papers: Angew. Chem. Int. Ed. 2018, 57, 2344–2347 and Angew. Chem. Int. Ed. 2018, 57, 2348–2352
The key achievement described in the papers is finding an ionic liquid, namely [N2225][NTf2], that can be used as salt bridge electrolyte and has such properties that two out of three main sources of LJP are eliminated.

The partners of the UnipHied network are LNE (France, coordinator), BFKH (Hungary), CMI (Czech Republic), DFM (Denmark), IPQ (Portugal), PTB (Germany), SYKE (Finland), TÜBITAK-UME (Turkey), Freiburg University (Germany), ANBSensors (United Kingdom), FCiencias.ID (Portugal), UT (Estonia).

UnipHied is funded from the EMPIR programme (project 17FUN09) co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.


A comprehensive comparative validation for two different types of dissolved oxygen (DO) analyzers, amperometric and optical, together with estimation of measurement uncertainty is presented in the recently published article I. Helm, G. Karina, L. Jalukse, T. Pagano, I. Leito, Environmental Monitoring and Assessment 2018, 190, 313.

A number of performance characteristics were evaluated including drift, intermediate precision, accuracy of temperature compensation, accuracy of reading (under different measurement conditions), linearity, flow dependence of the reading, repeatability (reading stability), and matrix effects of dissolved salts. The matrix effects on readings in real samples were evaluated by analyzing the dependence of the reading on salt concentration (at saturation concentration of DO). The analyzers were also assessed in DO measurements of a number of natural waters. The uncertainty contributions of the main influencing parameters were estimated under different experimental conditions. It was found that the uncertainties of results for both analyzers are quite similar but the contributions of the uncertainty sources are different.

The results imply that the optical analyzer might not be as robust as is commonly assumed, however, it has better reading stability, lower stirring speed dependence, and typically requires less maintenance. On the other hand, the amperometric analyzer has a faster response and wider linear range.

(Photo by Lauri Jalukse: measurements of dissolved oxygen concentration with amperometric and optical analyzers at Jordan spring, Karksi-Nuia, Estonia)


Measurement_Uncertainty_MOOC_Successfully_FinishedOn May 14, 2018 the on-line course (MOOC) Estimation of measurement uncertainty in chemical analysis offered by University of Tartu finished successfully.
Eventually altogether 521 people registered (270 in 2014, 489 in 2015, 757 in 2016, 363 in 2017) from 76 countries (a number of participants joined after the start of the course). 358 participants actually started the course (i.e. tried at least one graded test at least once) and out of them 218 successfully completed the course (141 in 2014, 169 in 2015, 308 in 2016, 148 in 2017). The overall completion rate was 42% (52% in 2014, 34% in 2015, 40% in 2016, 41% in 2017). The completion rate of participants who started the studies was 61% (67% in 2014, 60% in 2015, 67% in 2016, 68% in 2017). The completion rates are nicely consistent over the last years and can be considered very good for a MOOC, especially one that has quite difficult calculation exercises, which need to be done correctly for completing the course.

The participants were very active and asked lots of questions. The questions were often very much to the point and addressed things that are really important to analysts in their everyday work. The course has several forums (general and by topic) and the overall number of posts to them during the course period reached almost 300 (!) (overall number of posts, both from participants and from teachers) and the forums are still active and posts are still coming in.

This active participation made teaching of this MOOC a great experience also for us, the teachers. The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials, even during the course.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Spring 2019.


AKKI infopäev 03.05.18 AKKI_Infopaev_030518äratas ootuspäraselt laialdast huvi ja õnnestus suurepäraselt! Osalejaid oli 57, mis oli ligilähedane maksimaalsele oodatud osalejate arvule. Osalejad olid tõeliselt mitmekesiste taustadega – tööstuste esindajatest süvateadlasteni, laboritöötajatest riigiametnikeni. Oli nii professoreid kui doktorante, laborijuhataid kui omakäelisi analüütikuid.

Ettekannetega olid esindatud AKKI kolm partnerit, samuti ka mõned organisatsioonid, kes on AKKI laboritega edukalt koostööd teinud – Eesti Kunstiakadeemia (koostöö Europa Nostra auhinna pälvinud Rode altari projekti raames) ja OÜ Holz Prof (koostöö tootearenduse raames). Päeva huvitavaim osa oli kahtlemata ringkäik Chemicum’i laborites ja vabas vormis diskussioonid AKKI spetsialistidega.

Osalejatega vesteldes jäi kõlama üldine seisukoht, et selline teadmisi ja aparatuuri koondav ettevõtmine, mida AKKI endast kujutab, on kogu Eesti jaoks väga vajalik. Vestluste käigus tekkisid ka mitmed konkreetsed koostööideed, mille realiseerimine algab lähiajal.


AKKI meeskonnal on rõõm teatada, et on toimumas esimene AKKI võrgustikku tutvustav infopäev.

Ürituse raames on võimalik saada ülevaade AKKI partnerite tegevustest ning koostöövõimalustest. Lisaks on võimalus uudistada ringi Chemicumis ning suhelda meie teadlastega.

Üritus toimub Tartus ja on eesti keeles.

Registreerimine on avatud aadressil

Every year Estonian University of Life Sciences organises a conference called “Healthy animal and healthy food” where Dr. Riin Rebane made a presentation “Fight against food fraud” which explained the ever-expanding role of analytical chemists in food science. Reasons for food fraud vary, but are almost always for monetary gain and therefore food fraud is in constant progress. One good example is honey analysis, where for decades there has been a change in methods in order to identify whether honey is real or whether it is identified with correct botanical or geographical origin. As a natural product, no two honeys are identical and this makes identification further more challenging for the chemists. One of the possible methods is amino acid analysis since the amino acid content can be like a fingerprint for honeys and in University of Tartu we have analysed few hundreds of Estonian honeys and have seen that that foreign honeys do differ in most cases and also that there is a correlation between the amino acid content and botanical origin. But nevertheless, even this method might not work every time and chemists are looking towards methods such as nuclear magnetic resonance spectroscopy and even DNA-analysis to get better certainty for determining the origin of honey.

The summary based on the presentation was also reported in the newspaper Maaleht.


U_MOOC_Countries_of_Participants_2018On Tuesday, March 27, 2018 the web course Estimation of Measurement Uncertainty in Chemical Analysis was launched the fifth time as a MOOC (Massive Online Open Course)!

Currently more than 450 participants from 70 countries are registered! As was the case in the previous years, the majority of participants are from analytical laboratories. This once again demonstrates the continuing need for training in measurement uncertainty estimation for practicing analytical chemists.

The full course material is accessible from the web page As is usual, some developments and improvements have been made to the course material. in particular, the description of course organisatsion was improved; more explanations and examples were added on random and systematic effects within short and long term; the typical requirements for determining repeatability and within-lab reproducibility have been clearly outlined; more explanations on the main principles of modifying a model in a modelling approach have been given, together with an example. Some changes are still in the pipeline.

The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to pass six graded tests and get higher than 50% score from each of tehm. These tests are available to registered participants via the Moodle e-learning platform.


Measurement_Uncertainty_MOOC_Course_UTThe third edition of the MOOC (Massive Open Online Course) Estimation of Measurement Uncertainty in Chemical Analysis will be running during Mar 27 – May 7, 2018. Registration is open!

We currently have more than 100 registered participants from more than 30 countries.

The full course material (as well as the registration link) is accessible from the web page The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to take six graded tests and get higher than 50% score. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from University of Tartu. A digital certificate of completion is free of charge. A certificate of completion on paper can be requested for a fee of 60 euros.

You are welcome to distribute this message to potentially interested people!


We are glad EcoBalt 2013to announce that EcoBalt2018 is taking place in Vilnius, Lithuania.

More info can be found at:


LC_MS_Validation_MOOC_Participants_Countries_2017On Tuesday, November 28, 2017 the web course LC-MS Method Validation was launched for the second time as a MOOC (Massive Online Open Course). There are 423 registered participants (by more than 100 more than in 2016) from 71 countries, ranging from Bolivia to Indonesia and from Sweden to Tanzania. Image on the left shows the countries where the participants come from.

This is a practice-oriented on-line course on validation of analytical methods, specifically using LC-MS as technique. The course introduces the main concepts and mathematical apparatus of validation, covers the most important method performance parameters and ways of estimating them. The LC-MS validation course is delivered by a team of 8 teachers, each with their own specific area of competence. This way it is expected to offer the best possible knowledge in all the different subtopics of analytical method validation.

The full set of course materials is accessible from the web page The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged calculation exercises). In order to pass the course the registered participants have to take all tests and get higher than 50% score from each of them. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from the University of Tartu.

It is planned to run this course as MOOC again in autumn 2018.

(Image: Wikimedia Commons)